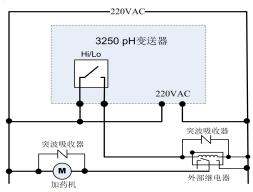
工业 pH 计

pH3250 说明书

目 录

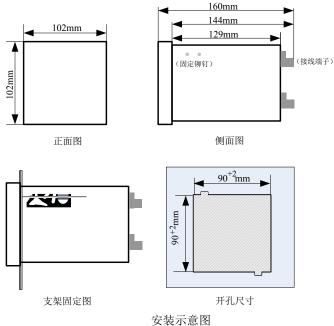
- ,	规格	1
二、	安装前注意事项	2
三、	安装	3
四、	接线说明	4
4.	1 接线端子图	4
4.	2 仪器接点功能图	4
4.	3 仪器接点说明	5
五、	按键说明	6
六、	屏幕指示说明	7
七、	操作	8
7.	1 操作流程	8
	2 参数设置操作	
7.	3 校正操作	11
八、	出错指示	13
8.	1 校正出错	13
8.	2 测量出错	15
九、	电极保养	16
十、	密码	17
	、常见问题	18


一、规格

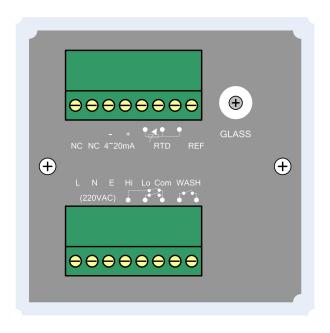
测量项目	H q	ORP	TEMP	
测量范围	-2.00 [~] 16.00pH	-1999~ 1999mV	-30 [~] 200°C	
分 辨 率	© 0.01pH	1mV	0.1℃	
精	$\pm 0.1\%$ (± 1 digit)	±0.1% (±1 digit)	±1℃	
温度补偿	★ Pt100/ Pt1000 自动温度补偿或	Pt100/ Pt1000 自动温度补偿或手动输入温度补偿		
输入阻抗	ኒ \geqslant $10^{12}\Omega$	\geqslant $10^{12} \Omega$		
环境温度	₹ 0~50°C	0~50°C		
显	* 背光液晶显示	背光液晶显示		
信号输出	〕出 隔离式直流 4 ~ 20mA 输出,最大负载 750 Ω			
控制触点 2个继电器触点输出				
触点容量 240VAC, 2A(max) 阻性负载				
 	1 个 0N/0FF 继电器触点输出			
洗时间	n ON: 0 ~ 9999 秒可选 OFF: () ~ 9999 小时可选		
电	100~240VAC, 50Hz	100 ² 240VAC, 50Hz		
固定方式	式 配电箱开孔安装			
机器尺寸 102×102×160mm(H×W×D)				
开孔尺寸 90 ⁺² ×90 ⁺² mm(H×W)				
功	≤ ≤5W			
重 量	≤1kg			
适配电机	进口或国产的玻璃 pH 或 ORP 电标	<u>ک</u>		

二、安装前注意事项

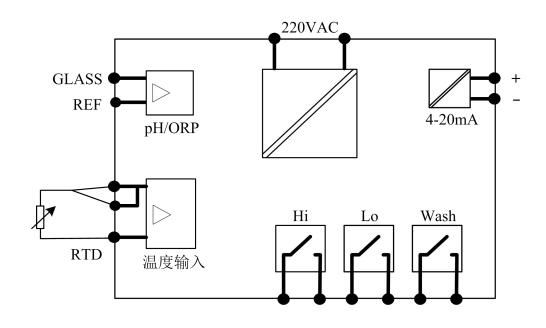
安装前请阅读本说明书, 以免接线不正确导致仪器损坏。


- ◆ 请选择通风良好的位置安装仪器,并避免仪器直接受到阳光照射。
- ◆ 在所有接线未完成前,请勿给仪器上电,以免发生危险。
- ◆ 电极信号传输必须采用专用电极电缆,不能使用一般电缆代替,否则将产生错误的测量结果。
- ◆ 使用 220VAC 的电源时,请避免使用三相电源,以免造成电源突波干扰。(若有电源突波干扰 现象发生,可将仪器用的电源与动力装置电源分开,即仪器采用单独电源,或在所有电磁开关 及动力装置的电源端接突波吸收器来消除突波,如加药机、搅拌机等)。
- ◆ 仪器内部的继电器为小电流继电器,若要控制较大动力的附属装置时,请务必外接耐电流较大的继电器,以确保仪器的安全。

仪器和动力装置的接线示意图

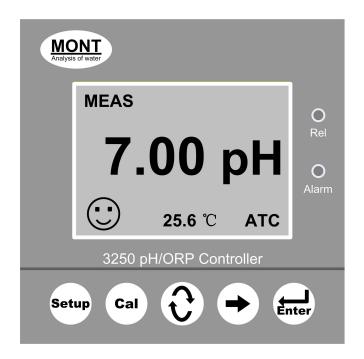

三、安装

- ◆ 在配电箱面板上开好 90⁺²mm×90⁺²mm 的仪器安装方孔。
- ◆ 仪器从配电箱的面板开孔直接放入,将仪器所附带的固定架卡入仪器两侧的铜铆钉,用一字型螺丝刀拧紧固定螺丝即可。



四、接线说明

4.1 接线端子图

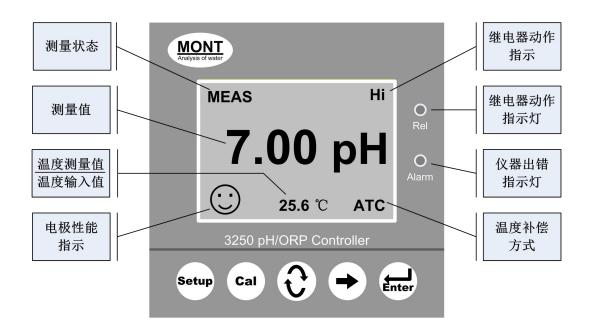

4.2 仪器接点功能图

4.3 仪器接点说明

GLASS		接 pH 或 0RP 电极信号线的透明线	
REF		接 pH 或 ORP 电极信号线的屏蔽网线	
L ⊿ L RTD		自动温度补偿时,左起第一端子接温度电极一端第三端子接温度电极 另一端 手动输入温度补偿时不接	
4~20mA	+	电流信号输出正端	
4 ZUIIA	_	电流信号输出负端	
NC		不接	
Hi		上限报警触点	
Lo		下限报警触点	
Com		上下限报警触点公共端	
WASH		清洗触点	
L		交流 220V 电源相线	
N		交流 220V 电源零线	
Е		接地线	

五、按键说明

 Setup
 —
 参数设定键

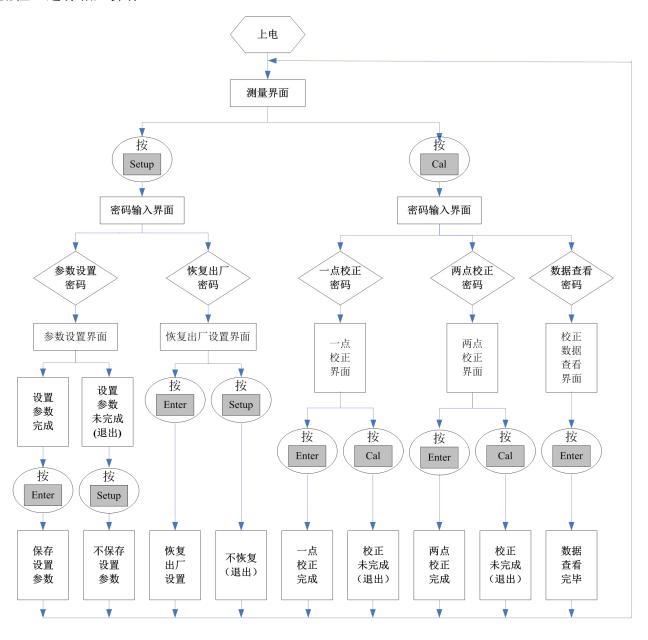

 Cal
 电极校正键

 →
 数字增减 / 功能切换键

 →
 移位键

 Enter
 —
 确认键

六、屏幕指示说明


屏幕显示 MEAS 表示仪表处于测量状态。
屏幕正中央显示的数值即为测量值。
自动温度补偿时,为温度测量值。
人工温度补偿时,为人工输入温度值。
电极性能指示,分别用笑脸、普通、哭脸表示。
Hi 为高点继电器闭合。
Lo 为低点继电器闭合。
Wash 为清洗继电器闭合。
该灯亮表示有继电器处于闭合状态。
该灯亮表示仪器处于异常状态。
MTC 表示人工输入温度补偿方式。
ATC 表示自动温度补偿方式。

注: 在 ORP 测量状态没有电极性能指示。

七、操作

7.1 操作流程

确认所有接线完成且无误后,将仪器上电启动。仪器自动进入测量界面,用户可根据以下流程,进行相应操作。

注: 密码见附表

7.2 参数设置操作

仪器设计了简便易懂的操作界面,用户可以通过仪器界面提示,对仪器进行参数设定、校 正等操作。

测量界面,按下 Setup 键,进入参数设定模式。(pH 为例^注)

◆ 参数设置密码输入

正确输入 4 位参数设置密码,按 Enter 键,进入参数设置界面

图 1 密码输入界面

密码输入正确,按下 Enter 键,进入参数设置界面

◆ 测量信号类型选择

测量pH信号,使阴影光标停留在pH字样上

测量 ORP 信号,使阴影光标停留在 ORP 字样上

图 2 测量信号选择

当前页参数设置完成,按下 Enter 键,进入下一页

TEMP

| man : 25.0[°]

auto: PT100
| PT1000
| ENTER

图 3 温度补偿选择

◆ 温度补偿方式选择

人工温度补偿:使阴影光标停留在man上,并设定补偿温度值

自动温度补偿:使阴影光标停留在 auto 上,并设定温度电极类型 (Pt100或 Pt1000)

当前页参数设置完成,按下 Enter 键,进入下一页

BUF

[[1]: 6.86/4.00
[2]: 7.00/4.00
[3]: 6.86/9.18
[4]: 7.00/9.21

ENTER

图 4 标准液选择注

◆ 标准液组别选择

[1]: 6.86 / 4.00

[2]: 7.00 / 4.01

[3]: 6.86 / 9.18

[4]: 7.00 / 9.21

当前页参数设置完成,按下 Enter 键,进入下一页

OUTPUT

4mA: +00.00[pH]

20mA: +14.00[pH]

ENTER

图 5 电流输出设定

◆ 电流输出设定

设定 4mA 输出对应值。

设定 20mA 输出对应值。

当前页参数设置完成,按下 Enter 键,进入下一页

REL

Hi: 14.00 ON db: 0.20 OFF

Lo: 0.00 ON db: 0.20 OFF ENTER

◆ 继电器控制设定

设定上限报警值,和上限报警迟滞。

设定下限报警值,和下限报警迟滞。

图 6 Hi/Lo 控制设定

当前页参数设置完成,按下 Enter 键,进入下一页

WASH

WASH OFF: 0000h

WASH ON : 0000s

SAVE

◆ 清洗继电器设定

设定清洗继电器断开时间(以小时计)。

设定清洗继电器闭合时间(以秒计)。

图 7 自动清洗设定

当前页参数设置完成,按下 Enter 键,保存设定参数,返回测量界面。

注: ORP 参数设定,可参照 pH 进行设定 ORP 标准溶液设定时,直接输入标准溶液的 mV 值即可

7.3 校正操作

7.3.1 pH校正

在测量界面按下 Cal, 即可进入校正模式。

 步骤
 →
 (1)
 (2)
 (2)
 (3)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4

光标提示将 pH 电极放入第一种标准溶液中,等界面显示数值稳定后,按 Enter 键,仪器自动进行校正。第一点校正完毕,光标落在第二点。

CAL [6.86/4.00]

CAL1: 18 [mV]

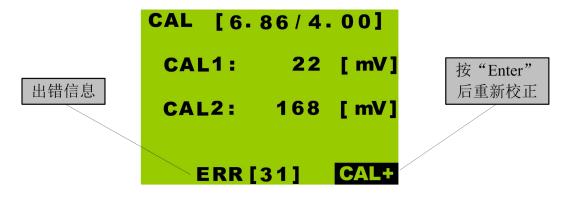
CAL2: 166 [mV]

Imv 88% SAVE

光标提示将 pH 电极放入第二种标准溶液中,等界面显示数值稳定后,按 Enter 键,仪器自动进行校正。校正完毕,光标落在 SAVE。按 Enter 保存;若不保存,按 Cal 键返回测量界面。

注:校正完成后,屏幕下方显示数据为当前 pH 电极的零点和斜率值

7.3.2 ORP 校正


注: 为达到良好的校正效果,标准溶液温度应在0~60℃之间

八、出错指示

仪器在测量和校正过程中,会对电极和仪器工作情况进行实时监测。若工作异常,仪器将通过屏幕或出错指示灯(Alarm灯)进行提示。如果屏幕提示出错信息,使用人员可根据屏幕提示信息,对照出错信息表比对检查。

8.1 校正出错

显示如图:

如图显示 ERR[31],对照出错信息表可知:校准溶液温度出错。

8.1.1 校正时出错信息表

出错信息	可能原因
ERR31	校准溶液温度小于 0℃或大于 60℃。 ◆ 温度补偿设置错误 (手动温度补偿时) ◆ 温度电极设置错误 (自动温度补偿时) ◆ 温度电极出错 (自动温度补偿时)
ERR32	 电极零点超出范围(±60mV) ◆ 电极老化 ◆ 标准溶液错误 ◆ 标准溶液污染 ◆ 电缆接线错误 ◆ 电缆老化
ERR33	电极斜率超出范围(70-120%) ◆ 电极老化 ◆ 标准溶液错误 ◆ 标准溶液污染 ◆ 温度补偿设置错误 (手动温度补偿时) ◆ 温度电极出错 (自动温度补偿时)

8.2 测量出错

仪器在测量时,会对电极和仪器工作情况进行实时监测。若仪器工作发生异常,屏幕右侧出错指示灯(Alarm灯)将会亮起,以警示相关操作人员。此时,操作人员需对仪器进行检查,并排除异常。以期达到良好的测量效果。

8.2.1 测量时出错信息表

8.2.1 测量时出错信息表		
出错信息	可能原因	
ERR21	温度补偿出错 ◆ 温度补偿设置错误 (手动温度补偿时) ◆ 温度电极设置错误 (自动温度补偿时) ◆ 温度电极出错 (自动温度补偿时)	
显示最大量程值或最小 量程值 (如: 16.00 pH)	电极信号超量程(小于-2.00pH 或大于 16.00pH) (小于-1999mV 或大于+1999mV) ◆ 电极未接 ◆ 电极老化 ◆ 电极接线错误 ◆ 电缆老化	
Alarm 灯亮 无提示信息	仪器设置错误 ◆ 4-20mA 电流输出超量程 ◆ 高低点继电器输出设置出错	

九、电极保养

电极性能是否良好是影响准确测量的重要因素,建议定期清洗和校正电极,以获得精确稳定的测量结果。

污染种类	清洗方式
一般性污染	用清水冲洗,将电极上污垢冲掉即可
钙盐污染	用 0.1mo1/L HC1 清洗数分钟,并用清水冲洗
油脂或有机物污染	用丙酮或乙醇短暂清洗电极,时间约为数秒钟
蛋白质污染	将电极浸在 Pepsin/HC1 溶液中数小时。 如 9891 电极清洗液
硫化物污染	将电极浸在 Thiourea/HCl 溶液中,直至电极隔膜变白为止。 如 9892 电极清洗液

当用上述方式清洗电极后,再将电极用清水冲洗干净,并将电极浸入饱和 KC1 溶液中约十五分钟,然后重新校正电极。

电极清洗过程中,请勿摩擦电极玻璃头,或采用机械式清洗电极,否则会产生静电干扰,影响电极反应。

白金电极在清洗时,可用细布沾水轻擦白金环。

注: 电极清洗周期依据污染程度而定,一般建议每周清洗校正一次。

十、密码

为了防止非相关人员误操作,仪器设计了密码功能。

◆ 参数设定密码 在测量界面按下 Setup 键,输入 1010 密码, 按下 Enter 键,即可进入参数设定模式。	PASSWORD SETUP 1010 ENTER
◆ 恢复出厂设置密码 在测量界面按下 Setup 键,输入 1088 密码, 按下 Enter 键,即可将仪器恢复出厂值。	PASSWORD SETUP 108
◆ 两点校正密码 (推荐) 在测量界面按下 Cal 键,输入 2020 密码,按 下 Enter 键,即可进入两点校正操作。	PASSWORD CAL 2020 ENTER
◆ 单点校正密码 在测量界面按下 Cal 键,输入 2010 密码,按 下 Enter 键,即可进入单点校正操作。	PASSWORD CAL 2010 ENTER

十一、常见问题

现象	可能原因
屏幕无显示	无供电或仪表故障
显示某个数值不变化 (7.00、-2.00、16.00等)	◆ 电极接线错误(pH测量极与参比极接反或导电层没有 剥除)◆ 静电干扰(一段时间后恢复正常)◆ 电极老化
校正速度缓慢	◆ 气温低,玻璃电极反应变慢◆ 电极老化
数据剧烈跳动	◆ 接线错误◆ 现场有强烈电磁干扰
其它	致电美尼特公司咨询